
PATHOGENESIS OF ALZHEIMER’S DISEASE

The exact causes of dementia are not yet known. By type, 
Alzheimer’s disease (AD), which is also known as (senile) dementia 
of the Alzheimer type (DAT), is caused by the aggregation of 
toxic proteins in the brain, and stroke-induced cerebrovascular 
dementia accounts for 80~90% of all dementia cases, with 
hydrocephalus or infectious diseases accounting for the rest. 
Dementia, which is a degenerative disease that is characterized 
by the general impairment of cognitive functions caused by 
temporary or lasting brain damage, is a serious “21st-Century 
disease.”

In the United States, as of 2012, 1 out of 8 senior citizens (13%) 
is suffering from AD, making it the sixth most common cause of 
death. Over 5.4 million Alzheimer’s patients are currently receiving 

medical care in the USA, and they incur care costs that are as 
high as $200 billion a year [1]. AD is a disease that is commonly 
characterized by a gradual decline of memory, language, and 
cognitive ability. It was first identified in 1907 by Alois Alzheimer, 
a German psychiatrist and neuropathologist, in his case report 
describing the pathological structure of senile plaques and 
neurofibrillary tangles in the brain of a 55-year-old woman who 
showed severe dementia symptoms with pathological features, 
such as a reduction of total brain volume, thinning of the cortical 
grey matter, ventricular enlargement, and deposits of amyloid, 
tau, and cerebrovascular amyloid proteins [2-5]. 

Senile plaques and neurofibrillary tangles are the hallmark 
pathological features that are observed in the brain of  an 
Alzheimer’s patient. Senile plaques are deposits of a distinct protein 
fragment called beta-amyloid (Aβ), which induces neuronal 
cytotoxicity, and neurofibrillary tangles are abnormal structures 
that are formed by changes in the tau protein inside nerve cell 
bodies. The nerve cells in the brains of Alzheimer’s patients 
progressively shrink and die. Such neuronal cell death occurs 
first in the brain regions that are responsible for memory and 
language, but it ultimately spreads to the entire brain. The neural 
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networks of Alzheimer’s patients are impaired by the decreased 
brain concentrations of acetylcholine, which is a neurotransmitter 
that is involved in intercellular signaling, and deficiencies in the 
production of other neurotransmitters, such as somatostatin, 
serotonin, and norepinephrine [6]. Familial Alzheimer’s disease 
(FAD) is caused by gene mutations, and the aggregation of Aβ 
is observed in FAD as a result of a gene mutation of the Aβ 
precursor protein, which is the main component of senile plaques, 
one of the hallmark pathological features of AD. Such excessive 
Aβ aggregation destroys neurons. Furthermore, there have been 
reports on the possible link between the apolipoprotein E (APOE) 
gene and the incidence of AD. There are three types of APOE, 
of which E4 is associated with AD, and E2 and E3 are known to 
serve the function of providing protection against AD. Everyone 
carries APOE gene, and APOE epsilon 4 is the susceptible gene. 
About 40% of AD patients are associated with APOE epsilon 4 
(e4), whereas the remaining 50% or more are known to be not 
associated with APOE genotype. There are three types of APOE, of 
which E4 is associated with AD, and E2 and E3 are known to serve 
the function of providing protection against AD [7].

Once AD develops due to the various causes described 
above, cholinergic neurons and synapses become affected and 
gradually degenerate or die. Many brain regions then display 
amyloid plaques and neurofibrillary tangles. Distribution of 
amyloid plaques can be classified into three stages (stage A, B, 
C). It is known that they form relatively constant patterns [8]. 
Neurofibrillary tangles show a regular pattern of aggregation [9]. 
The disease starts in the transentorhinal cortex and progressively 
spreads to the entorhinal cortex, the hippocampus, and the 
cerebral cortex. With the clear manifestation of neuronal cell 
death, memory and cognitive functions gradually decline along 
with the progression of dementia, while accelerating the patient’s 
death [10-12].

CHOLINERGIC HYPOTHESIS

In the latter half of the 1970s, neurochemical studies of post-
mortem tissue specimens reported damage to the cholinergic 
system, resulting in decreased acetylcholine-producing choline 
acetyltransferase (ChAT) activity, decreased choline absorption, 
and decreased acetylcholine release [13-15], as well as decreased 
cortical acetylcholinesterase activity [16, 17]. Cholinergic basal 
forebrain nuclei (ChBF) are the major neural pathways over which 
cholinergic neurons enter the hippocampus and cerebral cortex, 
and these nuclei are crucial for memory, concentration, and other 
cognitive procedures [12, 18]. In many animal experiments, the 
removal of cholinergic neurons or treatment with cholinergic 

antagonists, such as scopolamine or hyoscine, has been shown to 
elicit impairments of memory and other cognitive functions [19-
23].

The hypofunction of cholinergic neurons in the ChBF and 
cerebral cortex impairs Alzheimer’s patients’ cognitive functions 
[11]. The cholinesterase inhibitors (CEI) - rivastigmine, donepezil, 
and galantamine- suppress the acetylcholinesterase activity of 
decomposing acetylcholine, reducing cholinergic damage and 
leading to some improvements in behavior, concentration, and 
social involvement, as well as cognitive functions. However, they 
have the drawback of side effect and drug resistance [24] for 
long-term use. However, a glutamatergic N-methyl-D-aspartate 
receptor antagonist memantine, can also prevent amyloid-induced 
cholinergic neuron loss, and it is expected to bring about good 
results if used in combination with a CEI [25]. 

AMYLOID AND TAU HYPOTHESES

The suppression or removal of the formation of amyloid or 
neurofibrillary tangles is also crucial in the treatment of AD. 
Aβ is generated in normal people as well, however, unlike in 
Alzheimer’s patients, amyloid precursor protein (APP) undergoes 
a sequential cleavage first by α-secretase and then by γ-secretase, 
generating a water-soluble and nonpoisonous peptide different 
from Aβ [26]. In contrast, amyloid or Aβ in Alzheimer’s patients is 
a insoluble 4-kDa peptide that is generated when APP is cleaved 
by β- and γ-secretases [27]. γ-secretase is a multiprotein complex 
comprising presenilin (PSEN) 1 and PSEN 2, which generates Aβ 
by cleaving the transmembrane domain of APP after its cleavage 
by β-secretase [28, 29]. For the most part, Aβ generates Aβ40, which 
consists of 40 amino acids, but, due to a large number of cleavage 
sites, it occasionally generates a small amount of Aβ42, which 
is more likely to form fibrils more resistant to decomposition, 
making it more toxic to neurons compared to Aβ40.

While late-onset AD occurs in people aged 65 or older, FAD 
develops earlier because FAD is triggered by gene mutations of 
APP (chromosome 21), PSEN1 (chromosome 14), or PSEN2 
(chromosome 1), thereby eliciting Aβ aggregation in earlier years 
[30, 31]. Of these 3 types, the PSEN1 mutation has a relatively 
high proportion of Aβ42. As Aβ42 is more toxic than Aβ40, FAD 
progresses more rapidly in this case, and the time of onset can 
come as early as 20~30 years of age.

The brain has a small quantity of antioxidant enzymes despite its 
high amount of oxygen consumption, which makes it susceptible 
to reactive oxygen species. Aβ causes damage to mitochondrial 
membranes and hence increases the amount of intracellular H2O2, 
thus affecting the genes downstream by interacting with numerous 
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receptors and damaging neurons, ultimately accelerating cell death 
[32].

Tau is a neuronal microtubule-associated protein that stabilizes 
axonal microtubules by binding with them. If tau proteins get 
phosphorylated, they are separated from microtubules, and they 
form paired helical filaments in the neuronal cytoplasm [33]. 
Neurofibrillary tangles are abnormal intracellular aggregates of 
bundles of 12-kDa protein consisting of the residual microtubule-
binding sites of tau protein after the truncation of the N- and 
C-terminal domains. Although it is not clearly known whether 
Aβ plays a role in the formation of neurofibrillary tangles, a study 
has reported [34] that the injection of Aβ42 into the brain of a tau-
transgenic mouse resulted in a 5-fold increase in the formation 
of neurofibrillary tangles that was elicited by an increase of tau 
phosphorylation.

Whereas Aβ triggers the formation of neurofibrillary tangles, it is 
the formation of neurofibrillary tangles rather than Aβ itself that 
aggravates Alzheimer’s symptoms. In fact, in the case of FTDP-17, 
which is a chromosome 17-type dementia involving mutations in 
the tau gene, the symptoms of dementia are manifested without 
any Aβ aggregation [35].

Stem cell therapy for AD

Stem cells have therapeutic effects using regeneration and 
substitution of cells and tissues themselves. The therapeutic 
strategy of stem cell has two directions. One is to induce the 
activation of endogenous stem cell and the other is to regenerate 
injured cell or tissues through stem cell transplantation (Table 1). 

Endogenous stem cells can be induced and show neuroprotective 
effects by Chemical compounds and factors stimulating stem 
cells such as allopregnanolone (Apα), fluoxetine, granulocyte 
colony stimulating factor (G-CSF), AMD3100 and stromal cell-
derived factor-1a (SDF-1α). Apα induced endogenous neural 
precursor cells (NPCs) activation and promoted survival 
of  newly generated cells showing significantly increasing 
BrdU+ cells as well as improvement of learning and momory 
in 3xTgAD mice [36]. Another research group used three 
factors to stimulate endogenous hematopoietic progenitor cells 
(HPC). GCSF and AMD3100, CXCR4 antagonist, and SDF-
1α facilitated the mobilization and migration of bone marraw 
derived hematopoietic progenitor cell (BM-HPCs) into brain. 
AD model mice were improved memory as well as hippocampal 
neurogenesis in AD animal models after treatment of three factors, 
whereas Aβ deposition was not changed. These factors may act 
synergistically to migrate HPC and to produce a therapeutic effect 
[37]. Fluoxetine treatment was shown the neuronal differentiation 
and protective effects of NSCs against Aβ induced cell death [38].

It has recently been reported [39-45] that Alzheimer’s symptoms 
could be alleviated by transplanting stem cells derived from 
human umbilical cord, ammniotic membrane-derived epithelial 
cells and mesenchyme into the brains of Alzheimer’s transgenic 
animals. The treatment led to improve cognitive and memory 
performances and increased neuronal survival as a result of the 
decrease in Aβ, APP generation, and microglia activation. Another 
study [46] has reported a therapeutic effect of decreasing the 
size and number of Aβ as a result of differentiating peripheral 
mononuclear cells into microglia by injecting stromal cell-derived 
factor 1 into Alzheimer’s transgenic animals.

Transplantation of stem cells has shown promise for improving 
functional recovery for Alzheimer’s disease. MSCs could promote 
survival, increased the metabolic activity and help to rescue 
the AD cell model in vitro [47]. The coculture of human MSCs 
and BV-2, mouse microglia, increased neprilysine expression, 
the Aβ-degrading enzyme, under the exposure of Aβ [48]. The 
transplantations of human and mouse MSC derived stem cells 
were shown to reduce Aβ deposition, to improved memory and to 
alleviate the AD pathology in AD mouse models [49-51]. Mouse 
NSCs were colonized around amyloid plaques and modified 
to express metalloproteinase 9 (MMP9), a secreted protease 
reported to degrade aggregated Ab peptides, whereas these NSCs 
didn’t migrate into other regions after transplantation in AD 
mouse brain [52]. ADSCs also improved AD pathology involving 
reduction of Aβ deposition and memory improvement due to 
decreasing of proinflammatory factors [53]. Human amniotic 
epithelial cells (HSECs) were observed their survivals and no any 
immune rejection for 8 weeks. HAEC transplantation significantly 
ameliorated spatial memory deficits in TG mice, as well as 
increased acetylcholine levels and the number of hippocampal 
cholinergic neuritis [39]. 

Stem cell itself has therapeutic effects however, further studies are 
needed to determine the appropriate conditions to improve the 
therapeutic effects for AD pathology.

Gene therapy for AD

For the development of new medical drugs, it is necessary to 
gain a deeper understanding of the genetic factors of AD, the 
roles of amyloid and tau protein, and the mechanisms involved 
in neuronal degeneration. The current therapeutic mechanism of 
Alzheimer’s is to provide maximum support for the functions of 
the neurons remaining in the patient’s brain. The latest research 
direction of DAT focuses on early diagnosis, given that the 
medication that is administered upon the initial manifestation 
of memory loss can help to maintain the quasi-normal state of 
cognitive functions longer. 
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Table 1. Stem cell therapy for AD

Cell Additional Treatment Model

Endogeneous bone marrow derived hematopoietic progenitor 
cell (BM-HPCs)

Endogeneous NPCs

NSCs

MSCs

HUMSCs

Bone marrow derived mesenchymal stem cells (BM-MSCs)
Human umbilical cord mesenchymal stem cell (HUMSCs)

Bone marrow derived monocytic cells (BMM)

NSCs

Adipose derived stem cells (ADSCs)

Human amniotic epithelial cells (HAECs)

GCSF, AMD3100 and SDF-1α

Subcutaneous inj. of 
Allopregnanolone (Apα)

Fluoxetine treatment

Coculture with AD model cells

Coculture with BV2 and Aβ 
transplantation

Transplantation
Transplantation

Monocyte 
Differentiation 
Transplantation

Intracerebral transplantation

Transplantation

APP/PS1 mice

3xTgAD mice

In vitro

Truncated tau (151-391) expressing 
neuroblastoma cells 

APP/PS1 mice, Aβ exposure

AD mice
APP/PS1 mice

Irradiated mice

APPswe/PS1dE9 Line 85 mice

APP/PS1 mice

APP/PS1 mice

Table 1. Continued

Cell Results Ref.

Endogeneous bone marrow derived hematopoietic progenitor 
cell (BM-HPCs)

Endogeneous NPCs

NSCs

MSCs

HUMSCs
Bone marrow derived mesenchymal stem cells (BM-MSCs)
Human umbilical cord mesenchymal stem cell (HUMSCs)

Bone marrow derived monocytic cells (BMM)

NSCs

Adipose derived stem cells (ADSCs)

Human amniotic epithelial cells (HAECs)

*Induction of endogeneous BM-HPCs
*Improved memory 
*Apαpromoted survival of newly generated cells and restored cognitive 
performance

*Enhance neuronal differentiation
*Protective effects against Aβ induced cell death
*Promote survival
*Increased the metabolic activity
*Rescue the AD cell model
*Increase neprilysin expression
*Reduction in Aβ deposits
*Reduced Aβ deposition
*Improved memory
*Microglia activation
*Increased antiinflammatory cytokine
*Reduce Aβ burden
*Alleviating the AD pathology
*Colonization in white matter tracts
*High conc. Of MMP9 around amyloid plaques
*No migration
*Reduced Aβ deposition
*Improved memory
*Decreased proinflammatory factors
*Survival of HAECs for 8 weeks
*Migration without immune rejection
*Ameliorated memory
*Increased acetylcholine levels
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There have been recent encouraging results in animal studies 
with administration of Aβ antibodies to PDAPP mice in order 
decrease Aβ. They showed the recovery of acetylcholine release 
and choline absorption in the hippocampus. The learning capacity 
was also improved [54], The results have led to related clinical trials 
in humans [55, 56]. Continuous reduction of Aβ might be another 
method of addressing Alzheimer’s. This can be done with proteases 
such as neprilysin [57], insulin-degrading enzyme [58, 59], plasmin 
[60], and cathepsin B [61]. The intraventricular injection of the 
human neprilysin gene expressing viruses into amyloid transgenic 
mouse models has contributed to a decrease in Aβ aggregation 
and neuronal degradation in the frontal cortex and hippocampus 
[62]. According to a report [63], intraventricular injections of the 
human neprilysin gene expressing fibroblasts into Aβ-aggregation 
transgenic mouse models have resulted in a considerable decrease 
of amyloid plaques. These studies have provided the evidence 
that proteases can be used as Aβ-reducing therapeutic agents on 
account of their function of decomposing Aβ and paved the way 
for cure-oriented studies that focus on protease-expressing neural 
stem cells.

In an effort to overcome this drawback, the Tuszynski research 
team has recently conducted a study of ex vivo gene therapy with 
NGF (Table 2) [64]. Similarly, in clinical trials where human NGF 
genes were grafted into the fibroblasts harvested from each patient 
and that were transplanted back into the basal forebrain area of 
the patient, 6 patients were confirmed to show improvements of 
cognitive functions and increases of cerebral cortex metabolism in 
positron emission tomography after 22 months of the intervention 
without any side effects or toxicity, with 2 of them showing 
improvements in cognitive performances, electroencephalography, 
and nicotinic receptor binding [65].

ChAT-overexpressing human neural stem cells (HB1.F3.ChAT) 
were transplanted into Alzheimer’s animal models [40, 66]. As 

a result, it was confirmed that learning and memory functions 
were restored, the volume of acetylcholine in the cerebrospinal 
fluid was increased, and the transplanted cells were successfully 
migrated to several brain regions [40, 66].  According to a report, 
it was observed that transplantation of nerve growth factor 
(NGF) expressing human NSCs into hippocampus region of 
ibotenic acid-injected mice (one of the cognitive dysfunction 
models) could be improved the learning and memory as well as 
differentiated into neuron and astrocytes. These NGF carrying 
hNSCs showed the further neuro-protective effects than parental 
hNSCs against cytotoxic agents [67].

Among the cells expressing foreign genes that are used for 
Alzheimer’s therapy, HB1.F3.ChAT has proved its effectiveness. 
When these cells were applied to animal models with cognitive 
defects induced by AF64A and kainic acid, similarly safe and 
effective results were obtained [66]. Taken together, it can be 
expected that therapies with cells that simultaneously express 
neurotransmitters and growth factors could achieve better results.

CONCLUSION

Alzheimer’s therapies so far have revolved around retarding 
the progression of the disease rather than restoring the damaged 
neurons. However, the recent trend is to focus on removing the 
causes of the disease with stem cell-based therapies. If the causes 
of AD are understood more deeply and safer cell therapies are 
developed, AD could be conquered in the not too distant future.
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Table 2. Gene therapy for Alzheimer’s disease (AD)

Cell Gene Model Results Ref.

Encapsulated cell (EC)

hNSC, F3.ChAT

hNSC F3.NGF

Nerve growth factor (NGF)

Choline acetyltransferase (ChAT)

Human NGF

Human AD patient

Drug-induced 
AD 
Rat model

APP/PS1 TG mouse

Adverse effects in 1/3 of patients, 
No toxicity, 
Improved cognitive functions, 
Improved electroencephalography,
Improved nicotinic receptor binding 
Improved learning and memory performance,
Increase of acetylcholine,
Cell migration in the entire brain,
Differentiation into neurons and glial cells
Improved water maze performance, 
Increase of DeltaNp73 expression, 
Improved proliferation of transplanted cells, 
Decrease of senile plaques
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