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Abstract

Background

In the last two decades, mesenchymal stem cells (MSCs) have been pre-clinically utilized in

the treatment of a variety of kinds of diseases including chronic obstructive pulmonary dis-

ease (COPD). The aim of the current study was to systematically review and conduct a

meta-analysis on the published pre-clinical studies of MSC administration in the treatment

of COPD in animal models.

Methods and Results

A systematic search of electronic databases was performed. Statistical analysis was performed

using the Comprehensive Meta-Analysis software (Version 3). The pooled Hedges’s g with

95% confidence intervals (95%CIs) was adopted to assess the effect size. Random effect

model was used due to the heterogeneity between the studies. A total of 20 eligible studies

were included in the current systematic review. The overall meta-analysis showed that MSC

administration was significantly in favor of attenuating acute lung injury (Hedges’s g = -2.325 ±

0.145 with 95%CI: -2.609 ~ -2.040, P < 0.001 for mean linear intercept, MLI; Hedges’s g =

-3.488 ± 0.504 with 95%CI: -4.476 ~ -2.501, P < 0.001 for TUNEL staining), stimulating lung tis-

sue repair (Hedges’s g = 3.249 ± 0.586 with 95%CI: 2.103~ 4.394, P < 0.001) and improving

lung function (Hedges’s g = 2.053 ± 0.408 with 95%CI: 1.253 ~ 2.854, P< 0.001). Themecha-

nism of MSC therapy in COPD is through ameliorating airway inflammation (Hedges’s g =

-2.956 ± 0.371 with 95%CI: -3.683 ~ -2.229, P< 0.001) and stimulating cytokine synthesis that

involves lung tissue repair (Hedges’s g = 3.103 ± 0.734 with 95%CI: 1.664 ~ 4.541, P< 0.001).

Conclusion

This systematic review and meta-analysis suggest a promising role for MSCs in COPD

treatment. Although the COPD models may not truly mimic COPD patients, these pre-
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clinical studies demonstrate that MSC hold promise in the treatment of chronic lung dis-

eases including COPD. The mechanisms of MSCs role in preclinical COPD treatment may

be associated with attenuating airway inflammation as well as stimulating lung tissue repair.

Introduction
Over the last two decades, tremendous progress has been made in the field of regenerative
medicine and stem cell biology [1]. Mesenchymal stem cells (MSCs) are multi-potent stem
cells that have fibroblast-like morphology and the capacity to differentiate into chondrocytes,
osteoblasts, adipocytes and muscle cells under different micro-environmental conditions, cul-
ture media, and supplements [2, 3]. In addition to their regenerative properties, MSCs have
recently been shown to have unique immune-modulatory and anti-inflammatory properties
that render the MSCs as potential treatment options for a variety of kinds of inflammatory dis-
orders including chronic obstructive pulmonary disease (COPD).

COPD is the third-leading cause of death in the United States [4, 5]. Despite recent advances
in the treatment of symptoms with new pharmaceutical drugs and molecules, there remains no
effective treatment to attenuate disease progression or reverse the COPD and emphysematous
changes. Over the past decade, MSCs isolated from various tissues including bone marrow, adi-
pose, or cord blood, have been shown to lack immunogenicity and thus, can be used for alloge-
neic or autologous cellular treatment in a variety of diseases. In this context, studies have
demonstrated that MSCs have anti-inflammatory and immune-modulatory effects in diverse
types of tissue injury and allergic inflammation [6, 7]. MSCs are now known to have potent
beneficial effects in animal models of many types of lung injury including cigarette smoke-
induced or elastase-induced COPD/emphysema [8–10], bleomycine-induced fibrosis [11, 12],
bronchopulmonary dysplasia [13, 14], ventilator-induced lung injury [15], and bacterial pneu-
monia [16, 17]. Much of these preclinical data support the therapeutic potential of MSCs in the
animal models of human diseases including COPD.

Based on the findings of preclinical studies on MSC administration in COPD animal mod-
els, a multicenter double-blind placebo-controlled Phase II trial of allogeneic MSC infusions
for patients with moderate to severe COPD (FEV1/FVC< 0.70, 30%< FEV1 < 70%) have
recently been completed by Weiss et al [18]. This trial was based on the hypothesis that the
immune-modulating actions of MSCs would decrease pulmonary, and perhaps systemic,
inflammation associated with COPD, thus improving lung function, dyspnea and quality of
life. However, the result of this clinical trial was disappointing and found a lack of even a trend
for efficacy of MSC administration in COPD despite significantly reduced serum C-reaction
protein (C-RP) levels in the patients who received MSC administration [18].

Therefore, the current study was designed to systematically review pre-clinical studies of
MSC administration in the experimental models of COPD and to examine the pooled effect of
MSCs in reducing tissue damage and stimulating tissue repair in the animal models of COPD.

Materials and Methods

Data sources
This systematic review and meta-analysis followed the Preferred Reporting Items for System-
atic Reviews and Meta-analyses (PRISMA) criteria [19]. Relevant literature was searched for
with the following phrases: “mesenchymal stem cell(s)” and “COPD”, “mesenchymal stem cell
(s)” and “emphysema”, “mesenchymal stromal cell(s)” and “COPD”, or “mesenchymal stromal
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cell(s)” and “emphysema” in the sites of PubMed, Embase and Web of Science. The search was
limited to English. Relevant studies were also identified by hand-searching the references of
included articles. Literature search was performed by the following authors: Xiangde Liu and
Qiuhong Fang

Inclusion and exclusion criteria
Studies were included in the current systematic review and meta-analysis if: 1) Studies exam-
ined the relationship between MSCs and COPD or emphysema in animal models, 2) Studies
contained full text articles.

Studies were excluded if: 1) Insufficient publications existed to perform a systematic review
and meta-analysis, 2) A second publication of similar studies in a different journal from the
same research group, 3) Ex vivo or in vitro studies were conducted, 4) Studies utilizing MSC
conditioned medium (MSC-CM), 5) Studies lacking measurement data and thus meta-analysis
was not able to be performed.

Data extraction
All three authors (XL, QF, HK) were involved in data extraction. Information and data were
carefully extracted from all included literature according to the inclusion and exclusion criteria
as aforementioned. Data include first author name, publication date, country, source of MSCs,
recipient animal species, total number of cases or replication of the experiment, study design
and parameters observed.

Statistical analysis
The following forms of data were used for the data entry: 1) Mean, standard deviation (SD),
number of animals in control group and number of animals in MSC administration group, 2)
Sample size of control or MSC administration group and P value of comparison between the
two groups. The strength of MSC effect on COPD or emphysema lung tissue repair or other
biological effects was measured by Hedges’s g. A random effect model was applied due to the
significant heterogeneity of the data collected. The heterogeneity between studies was assessed
by the Q-test and I2 statistics, and P< 0.10 and I2 > 50% was considered as heterogeneous
between the studies [20]. All meta-analysis was performed using the Comprehensive Meta-
analysis software (Version 3, NJ, USA).

Results

Study features
The process of selecting literature is outlined in Fig 1. After careful review of the abstracts of
publications, a total of 36 full-text articles were retrieved. The full-text articles were indepen-
dently assessed by all three authors. Twenty one articles were included in the systematic review
and meta-analysis, as shown in Table 1, including studies of human bone marrow MSC
(BM-MSC, n = 1), human adipose stromal cells (ASC, n = 1), human cord blood derived MSC
(n = 1) or human tubal MSC (n = 1) [21–24], rat BM-MSC (n = 7) [9, 25–30], rabbit bone mar-
row derived mesenchymal stem cells (n = 1) [31], rat adipose derived stromal cells (n = 2) [32,
33], guinea pig adipose derived MSCs (n = 2) [34, 35], rat amniotic fluid derived MSC (n = 1)
[36], and mice BM-MSC or adipose-derived MSC or lung tissue MSC (n = 4) [8, 10, 37, 38].
Among the 21 articles 8 are from China, 4 are from Japan, 2 are from Korea, 2 are from Brazil,
2 are from Iran, one is from Canada, one from the USA, and one is from Taiwan.
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Results of overall systematic review
The first study of rodent MSC administration in a COPD model was published by Shigemura
et al from Japan in 2006 [25, 32]. However, most studies on COPD therapy with MSC adminis-
tration were published in 2014 (n = 8). Overall, administration of MSCs demonstrated that
MSCs have therapeutic benefit in both structural and functional outcomes in the COPD animal
models, which were prepared either by elastase instillation or cigarette smoke exposure.

Fig 1. Flow diagram of literature search and eligible publication selection.

doi:10.1371/journal.pone.0157099.g001
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Table 1. Characteristics of included twenty one papers.

First author Country Year MSC source Recipients COPD Delivery MSC dose & time Parameters evaluated

Shigemura N Japan 2006 Rat ASC Rat PPE IV 5x107/0.2mL TUNEL, PCNA, RAC index

1 wk after PPE Factor VII, HGF, PaO2

Maximum running,

Yuhgetsu H Japan 2006 Rabbit Rabbit PPE IB 108/2mL TUNEL, alveolar space

BM-MSC 24 h after PPE Ki-67 positivity

BALF total cell, macrophage

Zhen GH China 2008 Rat Female rat Papain IV 4x106/0.4mL MLI, TUNEL

BM-MSC Simultaneously

Zhen GH China 2010 Rat Female rat Papain IV 4x106/0.4mL MLI, TUNEL, Caspase-3

BM-MSC 2 h after papain VEGF-A

Huh JW Korea 2011 Rat Rat CS IV 6x105/0.3mL MLI, TUNEL

BM-MSC 6 m after CS

Katsha AM Japan 2011 C57Blk6 C57Blk6 PPE IT 5x105/0.2mL Lm, destructive index

BM-MSC 14 d after PPE IL-1β, IL-1β mRNA

HGF mRNA, EGF mRNA

Schweitzer KS USA 2011 Human Rat CS IV 3x105 cells Lung macrophage, PMN

ASC 2 m after CS Caspase3, lung volume

alveolar surface area

Furuya N Japan 2012 Rat ASC Rat PPE IV 2.5x106/0.5mL Lm, PaO2, HGF, CINC-1

7 d after PPE IL-1β,

Guan XJ China 2013 Rat Rat CS IT 6x106/0.15mL MLI, TUNEL, Caspase3

BM-MSC 7 wk after CS Vital capacity, FEV100

MMP-9, MMP-12,

TGF-β1, VEGF,

Antunes MA Brazil 2014 C57Blk6 C57Blk6 PPE IT and IV 1x105 cells Normal lung volume (%)

BM-MSC 3 wk after PPE Hyperinflation (%)

AD-MSC Lm, TUNEL

L-MSC Neutrophil

Feizpour A Iran 2014 Guinea pigs Guinea pigs CS IT and IV 106/0.3mL EC50 methacholine

ASC Day 1 and 14 Serum or BALF IL-8

Blood or BALF WBC

Ghorbani A Iran 2014 Guinea pigs Guinea pigs CS IT and IV 106/0.3mL Emphysema score

ASC Day 1 and 14 BALF thiol, serum MDA

Blood neutrophil, lymph

Li X China 2014 Human Rat CS IV 3x106 cells Lm, Trichrome

iPS-MSC Day 29 and 43

BM-MSC

Li YQ China 2014 Rat Rat CS + LPS IT 4x105/0.2mL MLI, TUNEL

AFD-MSC 4th and 8th wk Mean alveolar area

Tibboel J Canada 2014 C57Blk6 C57Blk6 PPE IT 5x105/0.2mL MLI, Dynamic compliance

BM-MSC IV 1x105/0.1mL Mean Forced Expiratory

Before & after PPE Flow

Zhang WG China 2014 Rat Rat CS IV 4x106/0.2mL MLI, TUNEL, IL-6

BM-MSC Day 20 and 62

Zhao YM China 2014 Rat Rat CS + LPS IV 5x106 cells Mean alveoli number

BM-MSC Day 36 Pulmonary alveolar area

Chen YB Taiwan 2015 C57Blk6 C57Blk6 PPE IV ? MLI, VEGF mRNA, HSP70

(Continued)
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Sources of MSCs were from human, rabbit, rat, guinea pigs or mouse and delivered to the
recipients either through intravenous (IV) injection, intra-tracheal (IT) or intra-bronchial (IB)
instillation, intra-peritoneal injection or intranasal instillation. One study compared the effi-
ciency of different MSC sources and delivery routes [8]. The authors found that IT administra-
tion of BM-MSC was superior to IV injection in terms of reducing alveolar hyperinflation or
collagen fiber content in the lung. They also found that IV administration of lung tissue derived
MSCs resulted in immediate death of the recipient mice while IV administration of BM-MSC
or adipose derived MSC did not [8]. Most recently, Kim et al reported that a minimum number
of 5x104 MSCs was required to achieve therapeutic effect [23].

Effect of MSC administration on lung injury and repair in COPD animal
models
Effect size of MSC administration on lung structural injury was examined by length of mean
linear interception (MLI) and positivity of TUNEL staining in the lung tissue. A random effect
model was adopted in assessing the effect size of MSCs on MLI length and TUNEL positivity
due to the high heterogeneity of the studies (I2 = 87.5 for MLI length and I2 = 82.7 for TUNEL
positivity, P< 0.01). Effect size of MSC transplantation on MLI was significantly (Hedges’s g =
-2.325 ± 0.145 with 95% CI: -2.609 ~ -2.040, P< 0.001, Fig 2) in favor of MSC treatment. Effect
size of MSC administration on TUNEL positivity was also significant (Hedges’s g =
-3.488 ± 0.504 with 95% CI: -4.478 ~ -2.501, P< 0.001, Fig 3) by random model of assessment
in favor of MSC treatment. Effect size of MSC on lung tissue repair was evaluated by PCNA
positivity, Ki-67 positivity, radial alveolar count index, factor VII for capillary assessment, alve-
olar surface area, and percent of normal lung. As shown in Fig 4, effect of MSC administration
on lung tissue repair was significantly (Hedges’s g = 3.249 ± 0.586 with 95% CI: 2.103 ~ 4.394,
P< 0.001) in favor of MSC treatment.

Next, effect size of MSCs on pulmonary functions was examined. Specifically, effect on vital
capacity (VC), FEV at 100 milliseconds (FEV100), dynamic compliance (Cdyn), mean forced
expiratory flow, EC50 methacholine (the effective concentration causing 50% of maximum con-
traction response to a methacholine challenge test), and plethysmograph (Peth) were evalu-
ated. Again, a random effect model was applied in assessing the effect size of MSCs on lung
function improvement (I2 = 80.1, P< 0.01), which was statistically significant in favor of MSC
administration (Hedge’s g = 2.053 ± 0.408 with 95% CI: 1.253 ~ 2.854, P< 0.001, Fig 5).

Table 1. (Continued)

First author Country Year MSC source Recipients COPD Delivery MSC dose & time Parameters evaluated

BM-MSC 14 d after PPE Whole body plethysmograph

Gu W China 2015 Rat Rat CS IT 6x106/0.15mL MLI, COX-2 mRNA, PGE2

BM-MSC 7 wk after CS Inflammation score,

IL-6, IL-10

Kim YS Korea 2015 Human C57Blk6 PPE IV Various dose MLI, VEGF

CBD-MSC 7 d after PPE

Peron JP Brazil 2015 Human C57Blk6 CS + IP or 1x106 cells BALF total cell, neutrophil

Tubal MSC Irradiation Intranasal Day 60 and 67 Airway mucus, collagen

ASC: adipose tissue derived stromal/stem cell; BM-MSC: bone marrow-derived mesenchymal stem cell

AD-MSC: adipose derived mesenchymal stem cell; L-MSC: lung tissue derived mesenchymal stem cell

CBD-MSC: cord blood derived mesenchymal stem cell; CS: cigarette smoke; PPE: porcine pancreatic elastase

IB: intra-bronchial; IV: intravenous; IT: intra-tracheal; IP: intra-peritoneal

doi:10.1371/journal.pone.0157099.t001
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Lastly, effect size of MSC administration on inflammation and production of anti-inflamma-
tory cytokines or growth factors stimulating tissue repair was also evaluated. Inflammation was
evaluated by the following parameters: infiltration of neutrophils or macrophages, IL-6 release,
cyclooxygenase-2 (COX-2) expression, PGE2 release, and production of matrix metalloproteinases
(MMP-9 andMMP-12) etc. In addition, the effect size of MSCs on the release of IL-10, VEGF,
HGF, EGF and TGF-β1 was assessed to evaluate the potential mechanism of MSC on lung tissue
repair. MSC administration resulted in inhibition of airway inflammation, and the effect size was
statistically significant (Hedge’s g = -2.956 ± 0.371 with 95% CI: -3.683 ~ -2.229, P< 0.001, Fig
6,) with significant heterogeneity (I2 = 84.8, P< 0.01). In contrast, MSC administration resulted
in up-regulation of anti-inflammatory cytokine (IL-10) and growth factors (VEGF, HGF, EGF
and TGF-β). The effect size was also statistically significant (Hedge’s g = 3.103 ± 0.734 with 95%
CI: 1.664 ~ 4.541, P< 0.001, Fig 7) with high heterogeneity (I2 = 88.0, P< 0.01).

Publication bias
Publication bias was originally defined as the publication or non-publication of studies
depending on the direction and statistical significance of the results [39]. Publication bias was
examined by the funnel plot of standard error versus Hedges’s g. As shown in S1–S6 Figs,

Fig 2. Forest plot for the MSC effect on mean linear interception (MLI). A random effect model was used due to significant heterogeneity of publications
(I2 = 87.5, P < 0.01). Effect size was assessed by Hedges’s g and 95%CI, and the effect on MLI reduction was in favor of MSC treatment (Hedges’s g =
-2.325 ± 0.145, 95% CI: -2.609~-2.040, P < 0.001) compared to control, which was the COPDmodel without MSC treatment.

doi:10.1371/journal.pone.0157099.g002
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Fig 3. Forest plot for the effect of MSCs on TUNEL positivity. A random effect model was used due to significant heterogeneity of publications (I2 =
82.7, P < 0.01). Effect size was assessed by Hedges’s g and 95%CI, and the inhibitory effect on TUNEL positivity was in favor of MSC treatment (Hedges’s
g = -3.488 ± 0.504, 95% CI: -4.478~-2.501, P < 0.001) compared to control group, which was the COPDmodel without MSC treatment.

doi:10.1371/journal.pone.0157099.g003

Fig 4. Forest plot for the effect of MSCs on lung tissue repair parameters. A random effect model was used due to significant heterogeneity of
publications was observed (I2 = 83.2, P <0.01). Effect size was assessed by Hedges’s g and 95%CI, and the stimulatory effect on lung tissue repair was in
favor of MSC administration (Hedges’s g = 3.249 ± 0.586, 95% CI: 2.103~4.394, P < 0.001). Control group was the COPDmodel without MSC treatment.

doi:10.1371/journal.pone.0157099.g004
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distribution of the funnel plot was nearly symmetric in MLI, tissue repair parameters, and lung
function assay parameters, but it was asymmetric in the remainder of the plots.

Discussion
Despite recent advances in the treatment of symptoms in COPD patients, the treatment of severe
COPD continues to be very challenging and there remains no effective therapy that has been
shown to reduce progression of emphysema [40]. Over the past decade, increasing number of pre-
clinical studies have suggested that administration of mesenchymal stem/stromal cells (MSCs)
can prevent or have a therapeutic effect in COPD animal models. Based on the preclinical find-
ings, a multi-center clinical trial of MSC administration in the treatment of COPD patients had
been conducted, although the results in human studies were less promising compared to the find-
ings of preclinical studies [18]. We systematically reviewed 21 publications of preclinical studies
of MSC administration in the treatment of COPD in animal models and further performed a
meta-analysis to examine the combined effect of MSC in COPD therapy. The current meta-analy-
sis indicated that MSC administration either by intravenous injection or intra-tracheal instillation
resulted in significant reduction of MLI and TUNEL positivity in the animal models of COPD,
significant stimulation of lung tissue repair, and significant improvement of lung function. MSCs
significantly attenuated airway infiltration of neutrophils and macrophages and production of
pro-inflammatory cytokines including IL-1β and IL-6, but significantly stimulated anti-inflamma-
tory cytokine IL-10 and growth factors including VEGF, HGF, EGF, and TGF-β, suggestingMSC
administration is an effective approach to treat COPD/emphysema in the animal models and
hold promise of future application of MSC administration in COPD patients.

While initial interest of MSC administration in a variety of diseases was centered on the
capacity for multi-lineage differentiation of the cells, recently MSCs have been considered
potent modulators of disease-associated tissue microenvironments such as milieu of chronic
inflammation and autoimmune reaction [41]. Thus, in the past decade, studies on MSCs have

Fig 5. Forest plot for the effect of MSCs on lung function in the COPDmodels. A random effect model was used due to significant heterogeneity of
publications (I2 = 80.1, P < 0.01). Effect size was assessed by Hedges’s g and 95%CI, and the effect on lung function improvement was in favor of MSC
administration (Hedges’s g = 2.053 ± 0.408, 95% CI: 1.253~2.854, P < 0.001). Control group was the COPDmodel without MSC treatment.

doi:10.1371/journal.pone.0157099.g005
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been focused on not only direct tissue and organ regeneration but also modulatory effects on
damaged and diseased tissues [42]. The anti-inflammatory and immunomodulatory properties of
MSCs [6, 7, 43] has been the focus of many of the recently published literature reports. COPD is
characterized by chronic airway inflammation and insufficient tissue repair [44]. Therefore, MSC
administration could be an effective cellular therapy for COPD[8, 18, 32]. Although there are 8
clinical trials currently ongoing to examine safety and efficacy of MSC administration in COPD
patients (Clinicaltrials.gov: NCT02645305, NCT01849159, NCT02348060, NCT02412332,
NCT02161744, NCT02041000, NCT02216630, NCT01559051), only two clinical trials of MSC
administration in COPD patients have been completed. In this content, Ribeiro-Paes et al from
Brazil examined the effects of intravenous infusion of autologous bone marrowmononuclear
cells in the treatment of advanced COPD patients (4 cases total) and 12-month follow-up showed
a significant improvement in the quality of life as well as a clinically stable condition [45]. The
result of a clinical trial conducted byWeiss et al from the USA, however, was disappointing, and
found lack of even a trend for efficacy of MSC administration in COPD [18]. Therefore, the cur-
rent study was designed to systematically review and analyze recent publications of preclinical
studies of MSCs and COPD, but not clinical trials.

Fig 6. Forest plot for the effect of MSCs on airway infiltration of inflammatory cells or release of pro-inflammatory cytokines in lung or blood. A
random effect model was used due to significant heterogeneity of publications (I2 = 84.8, P < 0.01). Effect size was assessed by Hedges’s g and 95%CI,
and the inhibitory effect on airway inflammation and systemic inflammation was in favor of MSC administration (Hedges’s g = -2.956 ± 0.371, 95% CI:
-3.683~-2.229, P < 0.001). Control group was the COPDmodel without MSC treatment.

doi:10.1371/journal.pone.0157099.g006
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The preclinical studies provide important evidence of MSC safety, toxicity, therapeutic effi-
cacy and mechanism of MSC action for future human clinical use. In this regard, studies on
rodent animal models of COPD have demonstrated that intravenous injection or intra-tracheal
instillation of rodent bone marrow MSCs (BM-MSCs) or adipose derived MSCs (AD-MSCs)
were safe and effective in attenuating airway injury by ameliorating airway inflammation and
apoptosis [8, 28, 38]. In contrast, intravenous injection of mice lung tissue derived MSCs
(L-MSCs) resulted in immediate death of the recipient mice, which may be associated with the
larger size of the L-MSCs or with cellular clumping resulting in pulmonary embolism [8]. In
addition, intra-tracheal instillation of BM-MSC seemed to be superior to intravenous injection
in reducing alveolar hyperinflation and collagen fiber content in the elastase-induced emphy-
sema models [8]. These findings suggested that intra-tracheal or intra-bronchial instillation is
a preferred and safer way of MSC administration for the treatment of airway diseases.

Studies on pharmacokinetics of MSCs in vivo demonstrated that both allogeneic and autolo-
gous MSCs appeared to distribute in a similar manner [46]. BM-MSCs distributed mostly in
lungs, liver and spleen at early stages (hours) of intravenous injection regardless the injury
located in the brain or heart [47, 48]. Consistent with animal model studies, a study on the fate
of MSCs examined autopsy materials from 18 patients who had received human leukocyte
antigen (HLA)-mismatched MSCs and found that MSC donor DNA was detectable in the
lungs, lymph nodes and intestine [49]. Furthermore, no signs of ectopic tissue formation or
malignant tumors of MSC-donor origin were found on macroscopic or histological examina-
tion [49]. These findings indicate the lung is one of the organs where MSCs initially distribute
following systemic administration.

Preclinical models have also provided important opportunities for testing and evaluating
the immune response induced by allogeneic MSCs under varying conditions [43]. Allogeneic
MSCs are considered to be poorly immunogenic in comparison with other cells and tissues,
and thus, human BM-MSCs, AD-MSCs, iPSCs, and cord blood derived MSCs (CBD-MSCs)
had been tested and evaluated in the experimental models of emphysema [21–24]. These

Fig 7. Forest plot for the effect of MSCs on growth factors and anti-inflammatory cytokines. A random effect model was used due to significant
heterogeneity of publications (I2 = 88.0, P < 0.01). Effect size was assessed by Hedges’s g and 95%CI, and the stimulatory effect on growth factors and
anti-inflammatory cytokines was in favor of MSC administration (Hedges’s g = 3.103 ± 0.734, 95% CI: 1.664~4.541, P < 0.001). Control group was the
COPDmodel without MSC treatment.

doi:10.1371/journal.pone.0157099.g007
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human MSCs were delivered to rodent recipients either by intravenous injection or by intra-
peritoneal injection. Administration of these MSCs significantly reduced airway inflammation,
parenchymal lung cell apoptosis and peri-bronchial collagen deposition in the recipient ani-
mals of cigarette smoke- or elastase-induced emphysema. These findings suggest that the pre-
clinical studies provide valuable information regarding mechanisms of MSC action, safety,
immunogenicity, and in vivo kinetics of therapeutically administered MSCs. Moreover, these
pre-clinical studies demonstrate that xenogeneic MSC administration is safe and effective, and
thus, in addition to autologous MSC, administration of allogeneic human MSC is safe and
plausible in clinical trials.

Substantial progress has been made recently in our understanding of the mechanisms of
interactions between MSCs and the recipient tissue microenvironment. As a result of such
studies MSCs are now known to have anti-inflammatory and immune modulatory effects. In
this regard, MSCs are adapted to their microenvironment through either the release of soluble
factors such as PGE2, kyneurnine, IL-10, TNF-stimulated gene 6 protein (TSG-6), NO, and
TGF-β1 [50–55], or context-dependent modification of T helper (Th1/Th2) balance or pro-
inflammatory Th17 cell differentiation [55–57]. Consistent with these reports, in the experi-
mental models of COPD, MSCs could also modulate release of inflammation-associated fac-
tors, that is, inhibiting pro-inflammatory cytokines or mediators such as IL-1β, TNF-α, IL-6,
and PGE2 [29, 30, 33, 37], stimulating anti-inflammatory cytokine IL-10 [29], and up-regulat-
ing synthesis of growth factors associated with tissue repair such as VEGF, HGF, EGF and
TGF-β1 [10, 23, 26, 28, 33, 37].

While the current meta-analysis was carried out on a rigorous systematic review that could
avoid publication bias, potential publication bias may exist in the current study [58, 59]. In this
regard, funnel plots of MLI, lung tissue repair parameters and lung function assay parameters
were nearly symmetrically distributed, suggesting no publication bias might exist in these
observations. However, distribution in the funnel plots of TUNEL positivity, inflammation,
and growth factors was asymmetric, indicating publication bias may exist in these analyses.

There are several limitations in the current systematic review and meta-analysis. First, studies
used different sources of stem cells including bone marrow, adipose tissue, lung tissue, umbilical
cord blood, tubal tissue, and amniotic fluid MSCs from human as well as rodents. Second, vari-
ous routes of MSC administration were used by different investigators, i.e., delivered through
intravenous injection, intra-tracheal or intra-nasal instillation, or intra-peritoneal injection.
Third, the protocol of assessment of emphysematous lung damage and repair was not standard-
ized in terms of time of MSC delivery and period of observation etc. Due to the aforementioned
limitations, publication bias may exist in the current review. Additionally, a randommodel was
used to examine the effect size of MSC therapeutic effects on COPD due to the data heterogene-
ity. Fourth, all of the animal models of COPD were in acute phase or sub-acute phase of lung tis-
sue injury, which varies greatly from the chronic inflammation-induced lung tissue damage and
insufficient repair observed in clinical COPD patients. Fifth, the publication bias was examined
only by funnel plot and not further examined by other methods such as Egger’s regression.

Following the completion of the clinical trial by Weiss et al [18], administration of MSCs for
COPD treatment is being further tested in eight clinical trials (clinicaltrials.gov:
NCT02645305, NCT01849159, NCT02348060, NCT02412332, NCT02161744, NCT02041000,
NCT02216630, NCT01559051). These clinical trials were designed to further evaluate efficacy
and safety of systemic administration of autologous or allogeneic MSCs in the treatment of
COPD. Researchers of the clinical trials anticipate that MSCs will inhibit chronic inflammation
in airway, alveoli and endothelium, promote tissue repair through releasing growth factors,
and improve patient’s quality of life. We expect that systemic administration of MSCs in
COPD patients is safe and will become an effective cellular therapy for COPD in near future.
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Conclusion
Taken together, the recent literature of preclinical studies of MSCs administration in COPD
animal models provides a wealth of potentially valuable information regarding in vivo safety,
immunogenicity, pharmacokinetics, and mechanisms of action of therapeutically administered
MSCs. These preclinical studies demonstrated that intravenous injection or intra-tracheal
delivery of MSCs (regardless BM-MSC, AD-MSC, or CBD-MSC) is safe and effective in the
therapy of COPD experimental models. The current systematic review and meta-analysis sug-
gest a promising role for MSC administration in COPD treatment. The mechanisms of MSCs
in pre-clinical COPD treatment may be associated with attenuating airway inflammation as
well as stimulating lung tissue repair.
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